Main Injector Quadrupoles: Magnetic Design Issues

Jean-François Ostiguy AD/Accelerator Physics, MS 345, X2231

October 30, 1990

1 Introduction

The Main Injector uses 202 conventional iron core magnets. Of the latter, N will be recycled from the Main Ring. M of these N magnets have been modified by shaving 0.010 inch off the top half-core to improve the field quality in the horizontal plane at high current. From the standpoint of harmonic content, the principal effect of this modification is the introduction of a sizable octupole component. In Fermilab jargon, the M modified magnets are referred to as "new-style" quadrupoles. The remaining M-N are known as "old style" quadrupoles

At least (202-N) quadrupoles will have to be fabricated. These new magnets will be identical to the so-called "old style" Main Ring quadrupoles, except for a redesigned conductor insulation scheme which will require minor modifications to the laminations. Essentially, the conductor slots must be made 0.116 inch thicker and 0.031 inch deeper. In principle, given the high permeability of the laminations, the effect on field quality is expected to be negligible. However, the pole profile in the neighborhood of the inner sides of the horizontal conductor slots has a dramatic effect on field quality. It is critical not to modify the pole profile and to be especially careful with the mechanical tolerances near the inner edges of the horizontal slots. In this note, a qualitative explanation of the magnetic behavior of the MR quadrupole magnets will be presented, followed by quantitative results. Finally, it is shown that the thicker insulation scheme can easily be accommodated without affecting field quality.

¹This modification was done in the pre-Tevatron era, when the Main Ring was the principal accelerator. For this reason, the Main Ring quadrupoles have been designed to operate at currents in excess of 7000 Amperes (8 conductors/pole).

2 Qualitative Explanation of the Magnetic Behavior

The most distinctive characteristic of the MR quadrupoles is unquestionably their asymmetric aperture. As shown in figure 1, The horizontal aperture is approximately twice the vertical aperture. To the extent that the harmonic content of the field results from the moments of the source distribution (current and induced dipole moment), it is obvious that a breaking of the 4-fold symmetry will result in the generation of higher harmonics. This symmetry breaking is also exacerbated by the fact that the regions situated at both extremes of the horizontal aperture tend to saturate first. The hyperbolic pole profile is therefore terminated in the horizontal plane by a "flat" constant gap region which is meant to retard the onset of saturation by preventing field concentration. This flat region is followed by a flared region whose purpose is to compensate for the multipoles induced by the horizontal-vertical symmetry breaking. Increasing the flare angle introduces a perturbation opposite to that induced by the symmetry breaking. This is a subtle effect which can be partially understood by considering figures 2 and 3. In these figures, only one of the four conductor groups is excited. When the topmost conductors are excited, one can see by tracking the flux lines that the flux density near the bottom horizontal slot is controlled by the flare angle. Similarly, when the leftmost conductors are excited, the flux density near the slot on the right-hand side is controlled by the same angle.

3 Quantitative Results

The harmonic content of the existing main ring quadrupoles has been determined using the code PE2D. The results are presented in tables 1 and 2. Since the conductors are positioned relatively to the lamination, the "new style" quadrupoles have non-zero skew multipoles; however, the latter remain negligible. Note that the skew multipoles of the "old style" quadrupoles must be zero by symmetry. The fact that they are not zero is due to numerical error; the values of the non-zero skew multipoles can be considered as some kind of a measure of this error. As expected, the modified magnets have a sizable octupole component. The on-axis gradient of the modified magnets is about 0.3% larger.

Table 3 summarizes the effect of a proposed modification to accommodate the new insulation scheme on the pole profile near the inner section of one of the horizontal slots. The effect of the proposed modification on the angle of flared sections is shown in figure 4. One can see that the perturbation of the harmonic content of the field is dramatic. It should also be noted that the sign of the perturbation is opposite to that resulting from the transition from "old style" to "new style". If, instead of trying to preserve the distance between the conductor and the magnetic axis of the quadrupole one makes the horizontal

slots a bit deeper and preserve the angle of the flared region, the field quality remains essentially unchanged. The results are summarized in table 4. Figures 5-6 compare the field gradients $\partial B_y/\partial x$ and $\partial B_x/\partial y$ along the horizontal and vertical axes respectively for both versions of the modified lamination profile.

MAIN RING QUADRUPOLES ("OLD STYLE")							
FIELD HARMONICS AT $r = r_0 = 2.54$ cm							
ARMC0 B3 laminations							
Magnetic Field in Gauss							
Multipoles			Multipoles/Quadrupole ×10 ⁴				
Pole	Normal	Skew	Normal	Skew			
	I =	215 Amperes ($E \simeq 8$	3.9 GeV)				
4	$+0.317748 \times 10^{+3}$	$+0.227224 \times 10^{-3}$	+10000.000000	+0.007151			
8	$+0.613866 \times 10^{-1}$	-0.249187×10^{-3}	+1.931927	-0.007842			
12	-0.569236×10^{-1}	-0.349162×10^{-3}	-1.791470	-0.010989			
16	$+0.458262 \times 10^{-1}$	-0.184547×10^{-4}	+1.442219	-0.000581			
20	-0.237989×10^{-1}	$+0.329926 \times 10^{-3}$	-0.748987	+0.010383			
24	$+0.100163 \times 10^{-1}$	$+0.227224 \times 10^{-3}$	+0.315228	+0.007151			
$I = 2904 \text{ Amperes } (E \simeq 120 \text{ GeV})$							
4	$+0.426396 \times 10^{+4}$	-0.520101×10^{-2}	+10000.000000	-0.012198			
8	$+0.720226 \times 10^{+0}$	$+0.138136 \times 10^{-1}$	+1.689101	+0.032396			
12	$-0.788976 \times 10^{+0}$	-0.185395×10^{-1}	-1.850336	-0.043480			
16	$+0.604282 \times 10^{+0}$	$+0.697204 \times 10^{-2}$	+1.417185	+0.016351			
20	$-0.334338 \times 10^{+0}$	-0.467039×10^{-2}	-0.784102	-0.010953			
24	$+0.148524 \times 10^{+0}$	$+0.438530 \times 10^{-2}$	+0.348324	+0.010285			
		$3630~\mathrm{Amperes}~(E\simeq 1)$					
4	$+0.530103 \times 10^{+4}$	-0.329340×10^{-2}	+10000.000000	-0.006213			
8	$+0.772933 \times 10^{+0}$	$+0.642628 \times 10^{-2}$	+1.458081	+0.012123			
12	$-0.995743 \times 10^{+0}$	-0.116553×10^{-2}	-1.878395	-0.002199			
16	$+0.750000 \times 10^{+0}$	$+0.139179 \times 10^{-2}$	+1.414819	+0.002626			
20	$-0.404405 \times 10^{+0}$	$+0.241065 \times 10^{-2}$	-0.762880	+0.004548			
24	$+0.154577 \times 10^{+0}$	$+0.116495 \times 10^{-2}$	+0.291598	+0.002198			
$I = 7000 \text{ Amperes } (E \simeq 289 \text{ GeV})$							
4	$+0.784391 \times 10^{+4}$	-0.364470×10^{-1}	+10000.000000	-0.046465			
8	$-0.290231 \times 10^{+1}$	$+0.531473 \times 10^{-1}$	-3.700081	+0.067756			
12	$-0.351710 \times 10^{+1}$	-0.533295×10^{-1}	-4.483860	-0.067988			
16	$+0.806742 \times 10^{+0}$	$+0.352193 \times 10^{-1}$	+1.028495	+0.044900			
20	$-0.643578 \times 10^{+0}$	-0.529958×10^{-1}	-0.820481	-0.067563			
24	$+0.223671 \times 10^{+0}$	$+0.300074 \times 10^{-1}$	+0.285152	+0.038256			

Table 1: Harmonic content of the "old style" quadrupole magnets. The skew multipoles are zero by symmetry. The non-zero values can be considered as a rough measure of the computational error.

MAIN RING QUADRUPOLES ("NEW STYLE") FIELD HARMONICS AT $r = r_0 = 2.54$ cm

Laminations midplane ≠ Coils midplane Origin = Laminations midplane ARMC0 laminations

Magnetic Field in Gauss

	Multipoles		Multipoles/Quadrupole ×104				
Pole	Normal	Skew	Normal	Skew			
	$I=215 \text{ Amperes } (E \simeq 8.9 \text{ GeV})$						
4	$+0.319162 \times 10^{+3}$	$+0.177236 \times 10^{-3}$	+10000.000000	+0.005553			
8	$+0.299695 \times 10^{+0}$	$+0.355590 \times 10^{-3}$	+9.390059	+0.011141			
12	-0.407296×10^{-1}	-0.229567×10^{-3}	-1.276142	-0.007193			
16	$+0.450326 \times 10^{-1}$	-0.409368×10^{-3}	+1.410964	-0.012826			
20	-0.240219×10^{-1}	$+0.650241 \times 10^{-3}$	-0.752655	+0.020373			
24	$+0.114788 \times 10^{-1}$	-0.119350×10^{-2}	+0.359654	-0.037395			
$I = 2904 \text{ Amperes } (E \simeq 120 \text{ GeV})$							
4	$+0.428251 \times 10^{+4}$	$+0.437089 \times 10^{-2}$	+10000.000000	+0.010206			
8	$+0.390118 \times 10^{+1}$	-0.695724×10^{-2}	+9.109565	-0.016246			
12	$-0.574938 \times 10^{+0}$	$+0.892401 \times 10^{-2}$	-1.342526	+0.020838			
16	$+0.589764 \times 10^{+0}$	-0.332185×10^{-2}	+1.377146	-0.007757			
20	$-0.343750 \times 10^{+0}$	$+0.243179 \times 10^{-2}$	-0.802683	+0.005678			
24	$+0.138853 \times 10^{+0}$	-0.447758×10^{-2}	+0.324233	-0.010456			
		3630 Amperes ($E \simeq 1$	150 GeV)				
4	$+0.532276 \times 10^{+4}$	$+0.762545 \times 10^{-2}$	+10000.000000	+0.014326			
8	$+0.470930 \times 10^{+1}$	-0.508754×10^{-2}	+8.847478	-0.009558			
12	$-0.716339 \times 10^{+0}$	$+0.159581 \times 10^{-1}$	-1.345804	+0.029981			
16	$+0.756447 \times 10^{+0}$	-0.617849×10^{-2}	+1.421156	-0.011608			
20	$-0.416831 \times 10^{+0}$	$+0.159518 \times 10^{-1}$	-0.783111	+0.029969			
24	$+0.165650 \times 10^{+0}$	-0.125884×10^{-1}	+0.311211	-0.023650			
$I = 7000 \text{ Amperes } (E \simeq 289 \text{ GeV})$							
4	$+0.740301 \times 10^{+4}$	$-0.380734 \times 10^{+1}$	+10000.000000	-5.142962			
8	$+0.392987 \times 10^{+1}$	$+0.343221 \times 10^{+1}$	+5.308476	+4.636236			
12	$-0.205017 \times 10^{+1}$	$-0.329361 \times 10^{+1}$	-2.769373	-4.449015			
16	$+0.812303 \times 10^{+0}$	$+0.319516 \times 10^{+1}$	+1.097260	+4.316028			
20	$-0.605438 \times 10^{+0}$	$-0.315056 \times 10^{+1}$	-0.817827	-4.255783			
24	$+0.205659 \times 10^{+0}$	$+0.312611 \times 10^{+1}$	+0.277805	+4.222755			

Table 2: Harmonic content of the "new style" quadrupoles. 0.010 inch has been shaved off the top half core.

MAIN INTECTOR OHARRIDOLE (PROPOCER MODIFICATION)					
MAIN INJECTOR QUADRUPOLE (PROPOSED MODIFICATION)					
	NORMAL FIELD HARMONICS AT $r = r_0 = 2.54$ cm				
j	ARMCO laminations				
	Magnetic Field in Gauss				
Pole	Multipoles Normal	Multipoles/Quadrupole ×10 ⁴			
Pole					
	$I = 215 \text{ Amperes } (E \simeq 8.9 \text{ GeV})$				
4	$+0.316736 \times 10^{+03}$	+10000.000000			
8	$+0.131997 \times 10^{+01}$	+41.674137			
12	$-0.737910 \times 10^{+00}$	-23.297321			
16	$+0.260663 \times 10^{+00}$	+8.229662			
20	$-0.619534 \times 10^{-01}$	-1.955995			
24	$+0.976741 \times 10^{-02}$	+0.308377			
	$I=215 \text{ Amperes } (E\simeq 120 \text{ GeV})$				
4	$+0.425412 \times 10^{+04}$	+10000.000000			
8	$+0.175915 \times 10^{+02}$	+41.351677			
12	$-0.990488 \times 10^{+01}$	-23.283028			
16	$+0.350294 \times 10^{+01}$	+8.234229			
20	$-0.839240 \times 10^{+00}$	-1.972770			
24	$+0.117123 \times 10^{+00}$	+0.275317			
$I=215 \text{ Amperes } (E \simeq 150 \text{ GeV})$					
4	$+0.529833 \times 10^{+04}$	+10000.000000			
8	$+0.217582 \times 10^{+02}$	+41.066147			
12	$-0.123563 \times 10^{+02}$	-23.321123			
16	$+0.435043 \times 10^{+01}$	+8.210945			
20	$-0.103300 \times 10^{+01}$	-1.949671			
24	$+0.154091 \times 10^{+00}$	+0.290829			

Table 3: Harmonic content of the field of the newly fabricated quadrupoles, assuming a proposed modification which would make the conductor slots 0.116 inch thicker and 0.011 inch deeper. The distances between the innermost conductors and the magnetic axis have been preserved.

MAIN INTECTION OF A DRIVE AND A TOP TO A DRIVE AND A D					
MAIN INJECTOR QUADRUPOLE (IMPROVED MODIFICATION)					
	NORMAL FIELD HARMONICS AT $r = r_0 = 2.54$ cm				
	ARMC0 laminations				
	Magnetic Field in Gauss				
Dala	Multipoles	Multipoles/Quadrupole ×104			
Pole	Normal	Normal			
	$I = 215 \text{ Amperes } (E \simeq 8.9 \text{ GeV})$				
4	$+0.317910 \times 10^{+03}$	+10000.000000			
8	$+0.125440 \times 10^{-01}$	+0.394577			
12	$-0.444405 \times 10^{-01}$	-1.397896			
16	$+0.411760 \times 10^{-01}$	+1.295209			
20	$-0.231162 \times 10^{-01}$	-0.727130			
24	$+0.111915 \times 10^{-01}$	+0.352034			
	$I = 2904 \text{ Amperes } (E \simeq 120 \text{ GeV})$				
4	$+0.426752 \times 10^{+04}$	+10000.000000			
8	$+0.411515 \times 10^{-01}$	+0.096430			
12	$-0.600582 \times 10^{+00}$	-1.407333			
16	$+0.561689 \times 10^{+00}$	+1.316195			
20	$-0.315323 \times 10^{+00}$	-0.738891			
24	$+0.130687 \times 10^{+00}$	+0.306236			
$I = 3630 \text{ Amperes } (E \simeq 150 \text{ GeV})$					
4	$+0.530870 \times 10^{+04}$	+10000.000000			
8	$-0.632951 \times 10^{-01}$	-0.119229			
12	$-0.766256 \times 10^{+00}$	-1.443397			
16	$+0.692673 \times 10^{+00}$	+1.304788			
20	$-0.410233 \times 10^{+00}$	-0.772756			
24	$+0.177653 \times 10^{+00}$	+0.334645			

Table 4: Harmonic content of the field with an improved version of the modification required to accommodate the thicker insulation. The angle of the flared section on the inner side of the horizontal slots has been preserved. The horizontal slots have been made 0.086 inch deeper than in the proposed modification and the horizontal conductors have been moved 0.097 inch away from the axis. The vertical slots are as proposed.

References

- [1] Main Accelerator Quadrupole Magnet Lamination, Drawing no 0424.11-ME-1042 Rev B.
- [2] Main Injector Quadrupole Magnet Lamination, Proposed Lamination (J. Humbert 10/1/90)

Figure 1: The Main Injector Quadrupole Magnet.

Figure 2: Effect of the flared section on field quality. Only the top conductor is energized.

ELEM-QUAD SYMM-XY SOLN-AT FIEL-MAGN
Static Solution Mesh 5012 Elements 28 Regions

VF/PE2D.8

Figure 3: Effect of the flared section on field quality. Only the right horizontal conductor is energized.

Figure 4: Effect of a proposed modification required to accomodate a thicker insulation on the flare angle.

Figure 5: Field gradient along the horizontal and vertical axes for the proposed modification.